出 处:《Journal of Systems Engineering and Electronics》2012年第3期355-363,共9页系统工程与电子技术(英文版)
基 金:supported by the National Natural Science Foundation of China (61102166);the Scientific Research Foundation of Naval Aeronautical and Astronautical University for Young Scholars (HY2012)
摘 要:Based on the target scatterer density, the range-spread target detection of high-resolution radar is addressed in additive non-Gaussian clutter, which is modeled as a spherically invariant random vector. Firstly, for sparse scatterer density, the detection of target scatterer in each range cell is derived, and then an M/K detector is proposed to detect the whole range-spread target. Se- condly, an integrating detector is devised to detect a range-spread target with dense scatterer density. Finally, to make the best of the advantages of M/K detector and integrating detector, a robust detector based on scatterer density (DBSD) is designed, which can reduce the probable collapsing loss or quantization error ef- fectively. Moreover, the density decision factor of DBSD is also determined. The formula of the false alarm probability is derived for DBSD. It is proved that the DBSD ensures a constant false alarm rate property. Furthermore, the computational results indi- cate that the DBSD is robust to different clutter one-lag correlations and target scatterer densities. It is also shown that the DBSD out- performs the existing scatterer-density-dependent detector.Based on the target scatterer density, the range-spread target detection of high-resolution radar is addressed in additive non-Gaussian clutter, which is modeled as a spherically invariant random vector. Firstly, for sparse scatterer density, the detection of target scatterer in each range cell is derived, and then an M/K detector is proposed to detect the whole range-spread target. Se- condly, an integrating detector is devised to detect a range-spread target with dense scatterer density. Finally, to make the best of the advantages of M/K detector and integrating detector, a robust detector based on scatterer density (DBSD) is designed, which can reduce the probable collapsing loss or quantization error ef- fectively. Moreover, the density decision factor of DBSD is also determined. The formula of the false alarm probability is derived for DBSD. It is proved that the DBSD ensures a constant false alarm rate property. Furthermore, the computational results indi- cate that the DBSD is robust to different clutter one-lag correlations and target scatterer densities. It is also shown that the DBSD out- performs the existing scatterer-density-dependent detector.
关 键 词:non-Gaussian clutter range-spread target robust de- tection quantization error collapsing loss target scatterer.
分 类 号:TN011[电子电信—物理电子学] TU998.13[建筑科学—市政工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...