检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李刚[1] 赵喆[1] 王慧泉[1] 林凌[1] 张宝菊[2] 吴晓荣
机构地区:[1]天津大学精密测试技术及仪器国家重点实验室,天津300072 [2]天津师范大学物理与电子信息学院,天津300387
出 处:《光谱学与光谱分析》2012年第7期1905-1908,共4页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(30973964);天津市应用基础及前沿技术研究计划项目(11JCZDJC17100);天津市科技计划项目;科技型中小企业创新基金项目(10ZXCXSY10400)资助
摘 要:为研究组分浓度分布范围对光谱法建模定量分析精度的影响,根据朗伯-比尔定律构造三种组分理想吸收谱并叠加高斯噪声,使用偏最小二乘回归对样本吸收谱及浓度进行建模和预测,观测不同浓度分布范围下分析精度的变化。研究表明,在纯线性吸收的情况下,组分浓度的分布范围对模型精度造成一定的影响。无论是被测组分还是非测量组分,校正集样本中覆盖足够大且较均匀的浓度分布范围是模型强普适性和良好预测精度的必要保证。研究为合理选择具有良好浓度分布校正集样本,从而提高模型质量、减小预测误差提供了理论指导。In order to discuss the effect of different distribution of components concentration on the accuracy of quantitative spec- tral analysis, according to the Lambert-Beer law, ideal absorption spectra of samples with three components were established. Oaussian noise was added to the spectra. Correction and prediction models were built by partial least squares regression to reflect the unequal modeling and prediction results between different distributions of components. Results show that, in the case of pure linear absorption, the accuracy of model is related to the distribution of components concentration. Not only to the component we focus on, but also to the non-tested components, the larger covered and more uniform distribution is a significant point of cali- bration set samples to establish a universal model and provide a satisfactory accuracy. This research supplies a theoretic guidance for reasonable choice of samples with suitable concentration distribution, which enhances the quality of model and reduces the prediction error of the predict set.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222