检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学数学系,江苏南京210096 [2]安徽师范大学数学系,安徽芜湖241000
出 处:《数学研究》2012年第2期167-174,共8页Journal of Mathematical Study
基 金:supported by Foundation item:the NSF of China(10971024);the Specialized Research Fund for the Doctoral Program of Higher Education(200802860024)
摘 要:称一个环R中的元素a是拟polar元,若存在p2=P∈R满足p∈comm_R^2(a),a+P∈U(R)并且ap∈R^(qnil);且称环R是拟polar的如果R中每一个元素都是拟polar元.本文证明了,任一环R中强π-正则元是拟polar的,而拟polar元是强clean的.拟polar环的一些扩张性质也作了探讨.An element a in a ring R is called quasipolar if there exists p2 = p ∈ R such that p ∈comm2R(α), a+p E U(R) and ap E Rqnil; and a ring R is said to be quasipolax in case every element of R is quasipolar. In this note, we prove that any strongly π-regulax element in a ring R is quasipotar, and any quasipolar element in R is strongly clean. Several extension properties of quasipolar rings are also investigated.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229