NOVEL GREY DECISION MAKING MODEL AND ITS NUMERICAL SIMULATION  被引量:6

一种新的灰色决策模型及其数值仿真(英文)

在线阅读下载全文

作  者:崔杰[1,2] 刘思峰[1] 谢乃明[1] 

机构地区:[1]南京航空航天大学经济与管理学院 [2]淮阴工学院经济管理学院

出  处:《Transactions of Nanjing University of Aeronautics and Astronautics》2012年第2期112-117,共6页南京航空航天大学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(90924022,70901041,71071077,71171113,71171116);the China Postdoctoral Science Foundation Funded Project(20100481137);the Humanisticand Social Science Foundation of the Ministry of Education of China(11YJC630032,12YJA630122,11YJC630273,09YJC630129);the Social Science Foundation of the College of Jiangsu Province(2011SJB630004);the Research Project of National Bureau of Statistics(2011LY008);the Jiangsu Planned Projects for Postdoctoral Research Funds(1101094C);the Qing Lan Project of Jiangsu Province(2010);the Educational Science Planning Key Projects of Jiangsu Piovince(B-a/2011/01/008)~~

摘  要:A grey multi-stage decision making method is proposed for a type of grey multi-index decision problems with weighted values completely unknown and attributes as interval grey numbers. Firstly, a method for compar- ing two grey numbers based on probability is developed to calculate weighted values of the attributes. Secondly, the experts' evaluation scores for attribute values are presented in terms of internal grey numbers. Finally, a weight solving method for multiple-stages evaluation is proposed. An example analysis verifies the availability of the proposed method. The method provides a new way of thinking for solving grey decision problem.针对一类权重完全未知且属性值为区间灰数的多指标灰色决策问题,根据灰色理论思想,提出了一种灰色多阶段决策方法。首先给出了一种基于可能度的灰数大小比较方法,然后利用灰色关联分析法对多位专家关于权重的评分结果进行计算得到各指标权重,进而分阶段对指标值以区间灰数的形式进行评分,根据灰色系统新信息优先原理给出了各个阶段评价值的赋权公式。实例验证了该决策方法的可行性。研究结果为求解灰色决策问题提供了一种新思路。

关 键 词:grey system multi-attribute decision making interval grey number 

分 类 号:N941.5[自然科学总论—系统科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象