检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:XU HaiMing ZHU Jun
出 处:《Chinese Science Bulletin》2012年第21期2637-2644,共8页
基 金:supported by the National Basic Research Program of China(2011CB109306and2010CB126006);the National Special Program for Breeding New Transgenic Variety(2009ZX08009-004B);the CNTC(110200701023)and the YNTC(08A05)
摘 要:Most of the important agronomic traits in crops,such as yield and quality,are complex traits affected by multiple genes with gene × gene interaction as well as gene × environment interaction.Understanding the genetic architecture of complex traits is a long-term task for quantitative geneticists and plant breeders who wish to design efficient breeding programs.Conventionally,the genetic properties of traits can be revealed by partitioning the total variation into variation components caused by specific genetic effects.With recent advances in molecular genotyping and high-throughput technology,the unraveling of the genetic architecture of complex traits by analyzing quantitative trait locus (QTL) has become possible.The improvement of complex traits has also been achieved by pyramiding individual QTL.In this review,we describe some statistical methods for QTL mapping that can be used to analyze QTL × QTL interaction and QTL × environment interaction,and discuss their applications in crop breeding for complex traits.Most of the important agronomic traits in crops,such as yield and quality,are complex traits affected by multiple genes with gene × gene interaction as well as gene × environment interaction.Understanding the genetic architecture of complex traits is a long-term task for quantitative geneticists and plant breeders who wish to design efficient breeding programs.Conventionally,the genetic properties of traits can be revealed by partitioning the total variation into variation components caused by specific genetic effects.With recent advances in molecular genotyping and high-throughput technology,the unraveling of the genetic architecture of complex traits by analyzing quantitative trait locus (QTL) has become possible.The improvement of complex traits has also been achieved by pyramiding individual QTL.In this review,we describe some statistical methods for QTL mapping that can be used to analyze QTL × QTL interaction and QTL × environment interaction,and discuss their applications in crop breeding for complex traits.
关 键 词:基因定位 农艺性状 分子育种 统计方法 数量性状位点 农作物育种 相互作用 遗传学家
分 类 号:S336[农业科学—作物遗传育种]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222