基于最佳联合稀疏表示的分布式压缩感知算法  被引量:3

Distributed Compressed Sensing Algorithm Based on the Most Compact Joint Sparsity Representation

在线阅读下载全文

作  者:张波[1] 刘郁林[1] 张建新[1] 

机构地区:[1]重庆通信学院DSP研究室,重庆400035

出  处:《西南科技大学学报》2012年第2期65-68,72,共5页Journal of Southwest University of Science and Technology

基  金:国家自然科学基金项目资助(60672157);重庆市自然科学基金重点项目资助(CSTC2011BA2016)

摘  要:通过探索无线传感器网络节点感知数据的时空相关性,可以构建适用于不同应用情形的联合稀疏模型。利用联合稀疏模型,提出了一种适用于无线传感器网络的分布式压缩感知算法。该算法采用联合编码联合解码的方式,充分利用了信号内部和信号之间的相关性,从而可以用更少的观测值实现信号群的精确重构。与单独编码单独解码相比,采用联合编码联合解码的方法,在保证信息可靠传输的前提下,减少了整个网络的数据流量,节约了宝贵的能量资源,以能量有效的方式满足了传感器网络的应用。Joint sparsity models(JSM) that applied in different situations could be constructed by exploi- ting both intra- and inter-signal correlation structures of multi-signal ensembles, such as wireless sensor network(WSN). Based on JSM, a distributed compressed sensing(DCS) algorithm that applied in WSN was proposed. The proposed algorithm in which multiple signals are encoded jointly and decoded jointly can reconstruct multiple signals with high probability by using significantly fewer measurements per sen- sor. In the premise of reliability of message delivery, it makes significant reduction in the network load and saves precious energy resources. Compared with the traditional method that encodes separately and decodes separately, the proposed method accommodated the requirements of WSN applications in energy efficient way.

关 键 词:无线传感器网络 分布式压缩感知 联合稀疏模型 联合解码 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象