机构地区:[1]Faculty of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China
出 处:《Science China(Life Sciences)》2012年第6期533-541,共9页中国科学(生命科学英文版)
基 金:supported by the National Natural Science Foundation of China (Grant Nos. 202015 and 205015)
摘 要:The rates of protein folding with photon absorption or emission and the cross section of photon-protein inelastic scattering are calculated from quantum folding theory by use of a field-theoretical method.All protein photo-folding processes are compared with common protein folding without the interaction of photons(non-radiative folding).It is demonstrated that there exists a common factor(thermo-averaged overlap integral of the vibration wave function,TAOI) for protein folding and protein photo-folding.Based on this finding it is predicted that(i) the stimulated photo-folding rates and the photon-protein resonance Raman scattering sections show the same temperature dependence as protein folding;(ii) the spectral line of the electronic transition is broadened to a band that includes an abundant vibration spectrum without and with conformational transitions,and the width of each vibration spectral line is largely reduced.The particular form of the folding rate-temperature relation and the abundant spectral structure imply the existence of quantum tunneling between protein conformations in folding and photo-folding that demonstrates the quantum nature of the motion of the conformational-electronic system.The rates of protein folding with photon absorption or emission and the cross section of photon -protein inelastic scattering are calculated from quantum folding theory by use of a field-theoretical method. All protein photo-folding processes are compared with common protein folding without the interaction of photons (non-radiative folding). It is demonstrated that there exists a common factor (thermo-averaged overlap integral of the vibration wave function, TAOI) for protein folding and protein pho- to-folding. Based on this finding it is predicted that (i) the stimulated photo-folding rates and the photon-protein resonance Raman scattering sections show the same temperature dependence as protein folding; (ii) the spectral line of the electronic transition is broadened to a band that includes an abundant vibration spectrum without and with conformational transitions, and the width of each vibration spectral line is largely reduced. The particular form of the folding rate--temperature relation and the abundant spectral structure imply the existence of quantum tunneling between protein conformations in folding and pho- to-folding that demonstrates the quantum nature of the motion of the conformational-electronic system.
关 键 词:protein folding dynamics photo-folding conformational change quantum transition
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...