两级相似度计算在主观题机器阅卷中的应用  

Application of Two Level Similarity Computation in Subjective Machine Marking

在线阅读下载全文

作  者:秦学勇[1] 张润梅[1] 

机构地区:[1]安徽建筑工业学院电子与信息工程学院,合肥230601

出  处:《计算机工程》2012年第11期274-276,280,共4页Computer Engineering

基  金:安徽省高校优秀青年人才基金资助项目(2009SQRZ101)

摘  要:针对问答题类文字描述性主观题机器阅卷的复杂性和困难性,提出一种用于机器阅卷的两级相似度计算算法。综合考虑答案的关键词、句子语法和语义信息,并结合分数微调规则设计算法。实验结果表明,该算法在词语级系数α取值约0.7时,阅卷系统具有最低的无效阅卷比例和较快的速度,符合人工阅卷的要求。According to answers' Key words,sentence grammar semantic informations and adjusting rules,this paper proposes a two level similarity computation algorithm which integrates the advantage of word level and sentence level similarity computation.It focuses on questions of text descriptive subjective examinations complexities and machine marking difficulties.Experimental results show that the system can obtain the minimum invalid marking ratio and fast speed,while word level coefficient α value is about 0.7.This algorithm complies with the effect of manual marking better.

关 键 词:相似度计算 向量空间模型 机器阅卷 自然语言处理 依存文法 规则 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象