Effects of Zr on acicular ferrite formation in HAZ of Ti-bearing low carbon steels with high heat input of weld thermal simulations  

Effects of Zr on acicular ferrite formation in HAZ of Ti-bearing low carbon steels with high heat input of weld thermal simulations

在线阅读下载全文

作  者:ZHU Kai YANG Jian WANG Ruizhi 

机构地区:[1]Metallurgical Process Division,Research Institute,Baoshan Iron&Steel Co.,Ltd.,Shanghai 201900,China

出  处:《Baosteel Technical Research》2012年第2期39-43,共5页宝钢技术研究(英文版)

摘  要:To research the effect of Zr addition on inhibiting austenite grain growth of Ti-bearing low carbon steels, two steels with different Zr contents were prepared using a laboratory vacuum induction furnace. The performance of HAZ under weld thermal simulations was investigated. The impact toughness, microstmcture and the second-phase particle performance of HAZ under weld thermal simulations were investigated. The HAZ toughness was improved from 13 J to 87 J by addition of 0.010 % Zr into the steel, with the fracture mechanism changing from cleavage fracture to toughness fracture, which was mainly attributed to the second-phase particles that were potent to nucleate acicular ferrite in HAZ during welding. It was concluded that the second-phase particles TiOx + MnS, ZrO2 + MIlS or TiO/+ ZrO2 + MnS were nucleated on ZrO2 or TiOx (x = 1.5,2). This method can be applied to grain refinement by promoting the acicular ferrite formation and growth during large-scale welding, as in the cases of thick steel plates requiring higher heat inputs during welding.To research the effect of Zr addition on inhibiting austenite grain growth of Ti-bearing low carbon steels, two steels with different Zr contents were prepared using a laboratory vacuum induction furnace. The performance of HAZ under weld thermal simulations was investigated. The impact toughness, microstmcture and the second-phase particle performance of HAZ under weld thermal simulations were investigated. The HAZ toughness was improved from 13 J to 87 J by addition of 0.010 % Zr into the steel, with the fracture mechanism changing from cleavage fracture to toughness fracture, which was mainly attributed to the second-phase particles that were potent to nucleate acicular ferrite in HAZ during welding. It was concluded that the second-phase particles TiOx + MnS, ZrO2 + MIlS or TiO/+ ZrO2 + MnS were nucleated on ZrO2 or TiOx (x = 1.5,2). This method can be applied to grain refinement by promoting the acicular ferrite formation and growth during large-scale welding, as in the cases of thick steel plates requiring higher heat inputs during welding.

关 键 词:low carbon steel ZIRCONIUM heat affected zone impact toughness microstructure 

分 类 号:TG457.11[金属学及工艺—焊接] TG142.31[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象