机构地区:[1]School of Electronics and Information Engineering,Beihang University,Beijing 100191,China [2]National Key Laboratory of CNS/ATM,Beijing 100191,China
出 处:《Chinese Journal of Aeronautics》2012年第3期396-405,共10页中国航空学报(英文版)
基 金:National Basic Research Program of China(2011CB707000);Innovative Research Group National Natural Science Foundation of China(60921001)
摘 要:The detection of sparse signals against background noise is considered. Detecting signals of such kind is difficult since only a small portion of the signal carries information. Prior knowledge is usually assumed to ease detection. In this paper, we consider the general unknown and arbitrary sparse signal detection problem when no prior knowledge is available. Under a Ney- man-Pearson hypothesis-testing framework, a new detection scheme is proposed by combining a generalized likelihood ratio test (GLRT)-Iike test statistic and convex programming methods which directly exploit sparsity in an underdetermined system of linear equations. We characterize large sample behavior of the proposed method by analyzing its asymptotic performance. Specifically, we give the condition for the Chernoff-consistent detection which shows that the proposed method is very sensitive to the norm energy of the sparse signals. Both the false alam rate and the miss rate tend to zero at vanishing signal-to-noise ratio (SNR), as long as the signal energy grows at least logarithmically with the problem dimension. Next we give a large deviation analysis to characterize the error exponent for the Neyman-Pearson detection. We derive the oracle error exponent assuming signal knowledge. Then we explicitly derive the error exponent of the proposed scheme and compare it with the oracle exponent. We complement our study with numerical experiments, showing that the proposed method performs in the vicinity of the likelihood ratio test (LRT) method in the finite sample scenario and the error probability degrades exponentially with the number of observations.The detection of sparse signals against background noise is considered. Detecting signals of such kind is difficult since only a small portion of the signal carries information. Prior knowledge is usually assumed to ease detection. In this paper, we consider the general unknown and arbitrary sparse signal detection problem when no prior knowledge is available. Under a Ney- man-Pearson hypothesis-testing framework, a new detection scheme is proposed by combining a generalized likelihood ratio test (GLRT)-Iike test statistic and convex programming methods which directly exploit sparsity in an underdetermined system of linear equations. We characterize large sample behavior of the proposed method by analyzing its asymptotic performance. Specifically, we give the condition for the Chernoff-consistent detection which shows that the proposed method is very sensitive to the norm energy of the sparse signals. Both the false alam rate and the miss rate tend to zero at vanishing signal-to-noise ratio (SNR), as long as the signal energy grows at least logarithmically with the problem dimension. Next we give a large deviation analysis to characterize the error exponent for the Neyman-Pearson detection. We derive the oracle error exponent assuming signal knowledge. Then we explicitly derive the error exponent of the proposed scheme and compare it with the oracle exponent. We complement our study with numerical experiments, showing that the proposed method performs in the vicinity of the likelihood ratio test (LRT) method in the finite sample scenario and the error probability degrades exponentially with the number of observations.
关 键 词:signal detection convex programming asymptotic analysis signal reconstruction sparse signals
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构] TN911.23[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...