检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王永强 周建中[1] 莫莉[1] 张睿[1] 张勇传[1]
机构地区:[1]华中科技大学水电与数字化工程学院,湖北省武汉市430074
出 处:《电网技术》2012年第7期94-99,共6页Power System Technology
基 金:高等学校博士学科点专项科研基金资助项目(20100142110012);国家自然科学基金青年科学基金(51109086);国家自然科学基金(51079057);水利部公益性行业科研专项(201001080)~~
摘 要:为减小水电站日发电计划与实际运行的偏差,提出一种基于机组综合状态评价策略的大型水电站精细化日发电计划编制方法。依据机组综合运行状态评价策略,确定机组优先开停次序;考虑水量、水库库容、机组运行限制等多重安全生产约束条件,以发电量最大为目标建立大型水电站日发电计划精细化模型,将其分解为机组组合子问题和开机机组最优流量分配子问题;采用原始量子进化算法和实数差分量子进化算法循环嵌套求解,获得水电站精细化日发电计划最优解。将所提算法应用于葛洲坝水电站并与其他求解方法对比,结果表明所提精细化日发电计划编制方法求解精度高,优化效果好。To reduce the deviation between daily generation plan and actual unit operation,based on comprehensive state estimation strategy of generating units a method to precisely schedule daily generation plan was proposed.According to comprehensive operation state estimation strategy for generating units,the preferential order to start up and shut down generating units was determined;considering multi constraints of safety production such as water flow,reservoir capacity,restraints of unit operation and so on and taking the maximum power output of the hydropower station as the objective,a precise daily generation plan model for large-scale hydropower station was built and decomposed into two subproblems,namely the unit commitment and the optimal flow distribution among the started units;then the original quantum evolution algorithm and real differential quantum evolutionary algorithm were employed to solve the two subproblems in nested loop mode to obtain the optimal solution of precise daily generation plan of large-scale hydropower station.Taking Gezhouba hydropower station as the research object,the proposed method was simulated and the simulation results were compared with the results by dynamic programming method.It was shown that the daily generation plan scheduled by the proposed method was more accurate than other method and the optimization effect of the proposed method was better.
分 类 号:TM734[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28