基于OMP的非合作宽带脉冲压缩雷达信号的压缩感知研究  被引量:6

Compressive Sensing Research of Uncooperative Wideband Pulse Compression Radar Signal by Orthogonal Matching Pursuit Algorithm

在线阅读下载全文

作  者:陈旗[1,2] 曹汉强[1] 方标[2] 黄高明[2] 

机构地区:[1]华中科技大学电子与信息工程系 [2]海军工程大学电子工程学院,湖北武汉430033

出  处:《信号处理》2012年第6期900-906,共7页Journal of Signal Processing

基  金:863计划项目(编号:2010AA7010422);湖北省自然科学基金项目(批准号:2009CDB337)

摘  要:压缩感知技术可以用来实现对非合作宽带信号的欠采样快速处理。宽带脉冲压缩雷达能够有效解决雷达探测距离和距离分辨力的矛盾,在探测领域得到了广泛应用,为实现对非合作宽带脉冲压缩雷达信号的快速欠采样接收处理,本文首先开展了信号稀疏分解与重构算法研究,通过对贪婪算法、凸松弛类算法、组合类算法三大算法进行对比分析,选用了运行速度快且重构精度高的正交匹配追踪(OMP)算法针对非合作宽带脉冲压缩雷达信号进行压缩感知仿真分析。仿真结果表明:在一定信噪比条件下,OMP算法完全能够实现对非合作宽带脉冲压缩雷达信号的欠采样和信号重构,从而实现了对非合作宽带雷达信号的欠采样处理,为处理非合作超宽带雷达信号提供了很好的理论指导。Compressive sensing technology is used to realize fast sub-Nyquist sampling process of uncooperative wideband signal,wideband pulse compress radar can resolved conflict between radar range and radar range discrimination effectively and is applied in the detecting field.The research of signal sparse decomposition and reconstruction algorithm are carried out firstly for the fast sub-Nyquist sampling process of uncooperative wideband pulse compress radar signal.OMP algorithm which has some characteristics such as rapid operating rate and high reconstructive precision is picked up among greedy algorithm,protruding relaxation algorithm and combination algorithm.Then OMP algorithm is carried out in the compressive sensing simulation analysis of uncooperative wideband pulse compress radar signal.It is showed by simulated conclusion that OMP algorithm can be used to complete sub-Nyquist sampling and reconstruction of uncooperative wideband pulse compress radar signal under suitable SNR condition,which will offer better theoretical guidance for the processing problem of uncooperative super wideband radar signal.

关 键 词:正交匹配追踪 非合作 宽带脉冲压缩雷达信号 压缩感知 信号重构 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象