检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李云[1]
出 处:《成都大学学报(自然科学版)》2012年第2期154-157,共4页Journal of Chengdu University(Natural Science Edition)
摘 要:提出了将奇异值分解总体最小二乘法(SVD_TLS)及扩展卡尔曼滤波(EKF)相结合的动态自组织模糊神经网络.首先给出了STD_DSFNN的结构及各层的含义;其次,用EKF算法学习非线性参数,SVD_TLS算法学习线性参数的同时提取重要模糊规则;最后,通过典型的Machey-Glass时间序列预测实例验证SVD_TLS及EKF相结合的动态自组织模糊神经网络(STE_DSFNN),同时与DFNN、ANFIS及UKF_DFNN相对比,结果表明STE_DSFNN网络结构更紧凑,具有更好的泛化能力.A dynamic self-organizing fuzzy neural network was proposed with the combination of SVD_ TLS and EKF. Firstly, the structure and meanings of each layer were given. Secondly, important fuzzy rules were extracted when using EKF algorithm and SVD _ TLS algorithm to learn nonlinear and linear parameters respectively. Finally, the STE _ DSFNN was verified through the typical Machey-Glass time series prediction examples, which was compared with the DFNN, ANFIS and UKF _ DFNN at the same time. The results show that the STE_ DSFNN network structure is more compact and has better generalization ability.
关 键 词:奇异值分解_总体最小二乘法(SVD_TLS) 扩展卡尔曼滤波(EKF) Machey-Glass时间序列预测
分 类 号:TP273.4[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28