扩散涌现的增量聚类算法  被引量:2

Diffused and emerging incremental clustering algorithm

在线阅读下载全文

作  者:姜云飞[1] 余春艳[1] 沈楠[1] 

机构地区:[1]福州大学数学与计算机科学学院,福建福州350002

出  处:《计算机工程与设计》2012年第7期2669-2672,共4页Computer Engineering and Design

基  金:国家自然科学基金项目(60805042);福建省自然科学基金项目(2010J01329);福建省高校产学合作重大基金项目(2010H6012);福建省新世纪人才资助计划基金项目(XSJRC2007-04)

摘  要:为了有效聚类动态数据,妥善处理已存在的类簇与新增数据的关系,高效利用计算资源,提高聚类的效率,扩散涌现的增量聚类算法被提出。该算法在扩散涌现聚类算法的基础上,利用近邻传播算法完善了算法的分裂机制,实现了新旧数据的有效聚合。实验结果表明,该算法有效实现了动态数据的聚类,提高了聚合动态数据的效率和资源的利用率。In order to effectively cluster dynamic data, properly handle the relationship between the new data and the existing class, and improve clustering efficiency and utilization of computing resources, a diffused and emerging incremental clustering al- gorithm (DEICA) is proposed. On the basis of diffused and emerging clustering algorithm (DECA), affinity propagation (AP) is used to improve division mechanism of the algorithm, so old and new data are efficiently clustered. Many experiments demon- strate our algorithm can achieve clustering of dynamic data and improve the efficiency of dynamic data aggregation and the utiliza- tion of resource

关 键 词:聚类 增量聚类 动态数据 近邻传播 数据挖掘 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象