和声搜索的半监督聚类研究与应用  

Research and application of semi-supervised cluster by harmony search

在线阅读下载全文

作  者:王华秋[1] 

机构地区:[1]重庆理工大学计算机科学与工程学院,重庆400054

出  处:《计算机工程与设计》2012年第7期2797-2803,共7页Computer Engineering and Design

基  金:教育部人文社会科学研究青年基金项目(10YJC870037);重庆市教委科学研究基金项目(KJ100805)

摘  要:由于现有的聚类算法还存在一些问题,研究了如何用和声搜索算法快速寻找最优的聚类中心,对于和声搜索算法也进行了一些改进。为了获得最佳的类中心数,采用了半监督方式循环测试各种中心数情况下的聚类质量。考虑到各维特征属性对聚类效果影响不同,采用了维度加权的方法进行特征选择。所有这些措施都是为了达到一个更好的聚类效果。实验结果表明,该聚类算法性能优于其它同类算法。算法被应用于并行计算性能分析中,用于区分和识别并行机的各个处理器运行性能类别。As there are some problems of the existing clustering algorithms, how to fastly find the optimal cluster centers by har- mony search is studied. Some improvements is also carried out for the harmony search algorithm. For getting the best number of cluster center, a semi-supervised method is used to test clustering quality under variable number of centers iteratively. Consi- dering the different influences of each dimension attribute on the clustering effect, each dimension is weighted to select feature. All of these methods is to achieve a better clustering quality. Experimental results show that the proposed clustering algorithm outperforms other similar algorithms. Finally, the proposed algorithm is applied to parallel computing performance analysis to distinguish and identify the performance category of various processor in parallel computer.

关 键 词:和声搜索 半监督 聚类 特征选择 并行性能分析 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象