检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ruliang WANG Kunbo MEI Chaoyang CHEN Yanbo LI Hebo MEI Zhifang YU
机构地区:[1]Computer and Information Engineering College, Guangxi Teachers Education University, Nanning Guangxi 530023, China [2]School of Mathematical Sciences, Guangxi Teachers Education University, Nanning Guangxi 530023, China [3]Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan Hubei 430074, China [4]Information Engineering College, Capital Normal University, Beijing 100048, China [5]School of Education Sciences, Guangxi Teachers Education University, Nanning Guangxi 530023, China
出 处:《控制理论与应用(英文版)》2012年第3期309-318,共10页
基 金:supported by the National Natural Science Foundation of China(Nos.60864001,61074124)
摘 要:In this paper, adaptive neural control is proposed for a class of multi-input multi-output (MIMO) nonlinear unknown state time-varying delay systems in block-triangular control structure. Radial basis function (RBF) neural net- works (NNs) are utilized to estimate the unknown continuous functions. The unknown time-varying delays are compensated for using integral-type Lyapunov-Krasovskii functionals in the design. The main advantage of our result not only efficiently avoids the controller singularity, but also relaxes the restriction on unknown virtual control coefficients. Boundedness of all the signals in the closed-loop of MIMO nonlinear systems is achieved, while The outputs of the systems are proven to converge to a small neighborhood of the desired trajectories. The feasibility is investigated by two simulation examples.In this paper, adaptive neural control is proposed for a class of multi-input multi-output (MIMO) nonlinear unknown state time-varying delay systems in block-triangular control structure. Radial basis function (RBF) neural net- works (NNs) are utilized to estimate the unknown continuous functions. The unknown time-varying delays are compensated for using integral-type Lyapunov-Krasovskii functionals in the design. The main advantage of our result not only efficiently avoids the controller singularity, but also relaxes the restriction on unknown virtual control coefficients. Boundedness of all the signals in the closed-loop of MIMO nonlinear systems is achieved, while The outputs of the systems are proven to converge to a small neighborhood of the desired trajectories. The feasibility is investigated by two simulation examples.
关 键 词:Adaptive control Backstepping technique Time-varying delay MIMO Neural network
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28