检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学,西安710072 [2]中船重工集团第713研究所,郑州450015
出 处:《计算机工程与应用》2012年第20期59-63,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.60871080)
摘 要:为了克服基于实数编码和目标函数梯度信息的双链量子遗传算法存在收敛速度慢和鲁棒性较差的缺点,提出了一种自适应变步长双链量子遗传算法。建立了反映目标适应度函数变化率的数学模型;构造了反映当前搜索点处适应度相对变化率的变步长系数k,通过调整k以改善适应度函数相对变化率从而优化解的搜索过程;提出了在迭代过程中的量子旋转门转角Dθ更新策略。针对复杂连续函数的优化问题,设计了算法的具体实施步骤,并对典型复杂函数进行了仿真。结果表明,该算法有效地改善了双链量子遗传算法的鲁棒性,加快了算法收敛速度。A self-adaptive variable step double chains quantum genetic algorithm is proposed in this paper, which improves the slow convergence rate and the poor robustness of the double chains quantum genetic algorithm based on real-code and gradient information. In the algorithm, the mathematical model is constructed which reflects change rate of objective fitness function. Coefficient k of variable step is established to reflect the relative change rate of the fitness at the current searching place. The searching process of the optimal solution can be improved by adjusting the coefficient k of variable step which affects the relative change rates of the fitness. The updating strategies of quantum revolving gate A0 are constructed. The specific procedure of the algorithm is designed for the complex continuous space optimization problems. The results of simulation show that the algorithm can improve the robustness effectively and improve the convergence rate.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222