Intelligent method to develop constitutive relationship of Ti-6Al-2Zr-1Mo-1V alloy  被引量:1

应用智能方法建立Ti-6Al-2Zr-1Mo-1V合金的本构关系(英文)

在线阅读下载全文

作  者:孙宇[1] 曾卫东[1] 赵永庆[2] 韩远飞[1] 马雄[1] 

机构地区:[1]西北工业大学凝固技术国家重点实验室,西安710072 [2]西北有色金属研究院,西安710016

出  处:《Transactions of Nonferrous Metals Society of China》2012年第6期1457-1461,共5页中国有色金属学报(英文版)

基  金:Project (2007CB613807) supported by the National Basic Research Program of China;Project (35-TP-2009) supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,China;Project (51075333) supported by the National Natural Science Foundation of China

摘  要:The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of deformation temperature and strain rate on the flow stress of Ti-6Al-2Zr-IMo-IV alloy was studied. Based on the experimental data sets, the high temperature deformation behavior of Ti-6A1-2Zr-IMo-IV alloy was presented using the intelligent method of artificial neural network (ANN). The results indicate that the predicted flow stress values by ANN model is quite consistent with the experimental results, which implies that the artificial neural network is an effective tool for studying the hot deformation behavior of the present alloy. In addition, the development of graphical user interface is implemented using Visual Basic programming language.利用Thermecmastor-Z热模拟机进行Ti-6Al-2Zr-1Mo-1V钛合金在不同工艺参数(变形温度800,850,900,1000,1050°C,应变速率0.01,0.1,1,10s-1)条件下的热模拟压缩试验,研究变形温度和应变速率对Ti-6Al-2Zr-1Mo-1V钛合金流变应力的影响。以试验数据为基础,应用BP神经网络算法原理,建立该合金的高温流动应力与变形温度、应变和应变速率对应关系的高温本构关系预测模型。结果表明,运用神经网络方法建立的Ti-6Al-2Zr-1Mo-1V钛合金本构关系模型具有较高的预测精度,与试验结果吻合良好。此外,运用Visual Basic可视化编程语言设计并开发了具有神经网络功能的用户界面。

关 键 词:Ti-6A1-2Zr-1Mo-IV alloy artificial neural network constitutive relationship deformation behavior 

分 类 号:TG146.23[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象