检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学数学系,南京211189 [2]徐州工程学院数学与物理科学学院,徐州221008
出 处:《Journal of Southeast University(English Edition)》2012年第2期256-260,共5页东南大学学报(英文版)
摘 要:Consider the reducibility of a class of nonlinear quasi-periodic systems with multiple eigenvalues under perturbational hypothesis in the neighborhood of equilibrium. That is, consider the following system x = (A + εQ( t) )x + eg(t) + h(x, t), where A is a constant matrix with multiple eigenvalues; h = O(x2) (x-4)) ; and h(x, t), Q(t), and g(t) are analytic quasi-periodic with respect to t with the same frequencies. Under suitable hypotheses of non-resonance conditions and non-degeneracy conditions, for most sufficiently small ε, the system can be reducible to a nonlinear quasi-periodic system with an equilibrium point by means of a quasi-periodic transformation.考虑一类有重特征值的非线性拟周期系统在小扰动下平衡点附近的可约化性问题,也就是研究x=(A+εQ(t))x+εg(t)+h(x,t),其中A可以是具有重特征值的常数矩阵;h=O(x2)(x→0);h(x,t),Q(t)和g(t)关于t是解析拟周期的,且有相同的频率.在某些非共振条件及非退化条件下,对充分小的大多数ε,通过仿线性拟周期变换,系统可约化为具有平衡点的非线性拟周期系统.
关 键 词:QUASI-PERIODIC REDUCIBLE non-resonance condition non-degeneracy condition KAM iteration
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222