检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]三峡大学电气与新能源学院,湖北宜昌443002
出 处:《陕西电力》2012年第6期53-55,78,共4页Shanxi Electric Power
摘 要:针对自动发电控制(AGC)机组的调配问题,提出将基本粒子群算法与离散粒子群算法相结合混合建模来求解,从而将电力系统机组调配组合这一整数规划问题分解为具有连续变量和离散变量的2个优化子问题。该方法兼顾了AGC机组的性能和价格因素,具有收敛速度快求解精度高等特点。通过对12机系统的算例分析和与其他算法的结果对比,验证了该方法的可行性和有效性。In allusion to the fact that there is discrete variable in deployment of AGC unit, a method by using S function to normalize the speed of the particle is presented. This paper integrates an improved discrete particle swarm optimization with the standard PSO method for solving trait deployment problem with continuous variable and discrete variable in power system. The feasibility and validity of the new method is demonstrated for 12-unit system, and the test resuhs are compared with those previously reported methods. Simulation resuhs show that the proposed method performs better in terms of solution's precision and result, and the proposed method is feasible.
分 类 号:TM73[电气工程—电力系统及自动化] TP83[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.109