检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张昌繁[1] 龚建[1] 刘素萍[1] 胡广春[1] 向永春[1]
机构地区:[1]中国工程物理研究院核物理与化学研究所,绵阳621900
出 处:《核技术》2012年第7期525-530,共6页Nuclear Techniques
摘 要:钚部件的模板是从申报部件的γ能谱与中子计数中提取反映其类型特征的量构成的,核查时再次测量部件的特征量并与模板进行比较判断两者是否为同一类型。将神经网络作为一种模板测量比较的匹配算法,分别应用于两种场景:BP神经网络能够对不同类别的钚部件进行分类,该场景通常用于核武库中核材料的管理与衡算,LVQ神经网络核查未知测量对象,判断是否与申报钚部件一致,该场景通常用于核裁军核查。通过实验,完善了模板的构成和匹配算法。Template measurement for plutonium pit extracts characteristic data from T-ray spectrum and the neutron counts emitted by plutonium. The characteristic data of the suspicious object are compared with data of the declared plutonium pit to verify if they are of the same type. In this paper, neural networks are enhanced as the comparison algorithm for template measurement of plutonium pit. Two kinds of neural networks are created, i.e. the BP and LVQ neural networks. They are applied in different aspects for the template measurement and identification. BP neural network is used for classification for different types of plutonium pits, which is often used for management of nuclear materials. LVQ neural network is used for comparison of inspected objects to the declared one, which is usually applied in the field of nuclear disarmament and verification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117