检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏杰[1] 缪裕青[1] 刘少兵[1] 吴孔玲[1]
机构地区:[1]桂林电子科技大学计算机科学与工程学院,广西桂林541004
出 处:《桂林电子科技大学学报》2012年第4期302-306,共5页Journal of Guilin University of Electronic Technology
基 金:广西可信软件重点实验室开放基金(11-031-28);广西研究生科研创新项目(2011105950812M22)
摘 要:针对基于词典的传统分类器无法对不在词典中的情感词的极性和强度进行有效计算和细分的问题,基于最大期望模型,提出构建完善情感词典的EM-SO算法,在此基础上设计基于语义倾向计算模型的否定式和强(弱)化处理组件,以获取评价词及其修饰词的组合效应。实验结果表明,所提算法及所设计组件在评论集上对情感词极性和强度的计算性能优于SO-CAL模型,可应用到主观性分类等实际任务中。For the polarity and strength of unknown sentiment words cannot be calculated and classified effectively in traditional lexicon-based classifiers, the EM-SO algorithm was proposed based on expectation maximization for con- structing and updating sentiment lexicon. Negative and intensifying components were designed upon SO-CAL for capturing the combined effects of appraisal words and their modifiers. Experimental results showed that the EM-SO algorithm and designed components outperform SO-CAL obviously for the calculation performance of the polarity and strength of sentiment words on review sets and can be applied to the subjective classification task and so on.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15