检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国人民解放军71426部队 [2]许昌学院计算机科学与技术学院
出 处:《计算机工程》2012年第14期171-172,176,共3页Computer Engineering
摘 要:提出一种基于最近特征线(NFL)的二维非参数化判别分析算法,用于人脸识别等模式分类问题。该算法在子空间学习阶段运用NFL思想计算训练集中各样例的最近特征距离,计算得到低维投影空间,在低维投影空间中进行分类。通过ORL标准人脸数据库进行实验,结果表明该算法的鲁棒性优于传统算法。A new subspace learning algorithm called Two-dimensional Nonparametric Discriminant Analysis Algorithm Based on Nearest Feature Line (TDNDA-NFL) is proposed for pattern classification, such as face recognition. The proposed algorithm integrates the idea of NFL and two-dimensional nonparametric discriminant algorithm. It computes the nearest feature distance based on the idea of NFL in the subspace learning stage, then it computes the low-dimensional subspace using two-dimensional nonparametric discriminant algorithm. It classifies in the projected space. In experiments the proposed method is evaluated by the ORL databases and computed with several state-of-the-art algorithms. According to the computed results, the proposed method outperformes other algorithms.
关 键 词:最近特征线 二维非参数化判别分析 子空间学习 ORL数据库
分 类 号:TP312[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.178.138