检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李相君[1] 楚武利[1] 张皓光[1] 米攀[1]
机构地区:[1]西北工业大学动力与能源学院,陕西西安710072
出 处:《计算机仿真》2012年第7期75-79,167,共6页Computer Simulation
摘 要:研究轴流压气机优化设计问题,在高负荷跨音速轴流压气机相应的叶型优化设计工作中,针对压气机等熵效率过低,由于转子叶顶通道出现流动分离,导致损失过大。为提高等熵效率,结合人工神经网络与遗传算法对压气机转子的吸力面50%叶展以上叶型进行调整。优化后的新叶型可以有效地改善叶顶流动结构,抑制分离,在总压比基本不变的情况下使压气机峰值效率提升约1.7试验证明,叶型优化设计有显著效果,同时也指出了单一优化方案的局限性。An optimization design was carried out for a high-loading transonic axial compressor. A flow separation was found around the tip region of rotor blade which mainly enlarged loss end up with an insufficient isentropy effi- ciency. To increase the isentopy efficiency of the compressor, the design process adjusted the suction side profile of the upper 50% span based on the method consisting of artificial neural net work and genetic algorithm. As the result, the new profile greatly improved the structure of the flow field, suppressed the flow separation, and finally brought an increase of peak-efficiency about 1.7% , while the mass-flow rate in the same back pressure was obviously enlarged. The design shows an outstanding effect and also the limit of single-method optimization.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249