检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学电子信息学院,陕西西安710072 [2]西安电子科技大学电子工程学院,陕西西安710071
出 处:《计算机仿真》2012年第7期269-273,共5页Computer Simulation
摘 要:视频运动目标的检测与定位是视频监控系统的主要技术之一。针对现有视频监控系统目标定位过程在目标被浅度遮挡或存在噪声时定位不准确的问题,提出了一种新的视频运动目标定位方法。采用减法聚类、聚类有效性函数与加权模糊C-均值聚类方法相结合。首先利用减法聚类,获得初始聚类中心,再通过加权模糊C-均值聚类算法对视频运动进行目标定位,避免了算法陷入局部最优而获取了全局最优。然后引入聚类有效性函数,获得视频序列中目标的最佳个数。仿真结果表明,改进方法对存在噪声或野点的情况具有较好的鲁棒性,并可以在不需要人为给定待检测图像目标个数的情况下,对存在浅度遮挡区域的目标进行准确定位。Moving object detection and location are core technologies in video surveillance system. In order to im- prove the present object location methods in video surveillance system, a novel moving object location method was proposed. The new algorithm combines the subtractive clustering, clustering validity function with the weighted fuzzy C-means clustering. The subtractive clustering was used to obtain initial clustering centers, and then the weighted fuzzy C-means clustering was used to locate the moving object, which makes the algorithm able to avoid local opti- mum and get the global optimum. Finally, the clustering validity function was introduced to obtain the optimal number of the clusters. Simulation results show that the proposed method has a good robustness even in a high noisy or outli- ers enviroment, and can accurately locate the moving objects which has overlap areas without the given number of the objects in the detected images.
分 类 号:TP317.4[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.52