自适应局部独立分量分析  

Adaptive local independent component analysis

在线阅读下载全文

作  者:余成义[1] 肖涵[1] 刘安中[1] 李友荣[1] 

机构地区:[1]武汉科技大学冶金装备及其控制教育部重点实验室,武汉430081

出  处:《振动与冲击》2012年第14期148-151,共4页Journal of Vibration and Shock

基  金:武汉晨光计划(200950431201);湖北省教育厅科研计划(Q20100003);博士点基金(200804880002)

摘  要:提出一种自适应局部独立分量分析降噪算法。该算法先将一维时间序列重构到高维相空间,用聚集模糊K均值聚类和聚类评价函数求取高维数据集的聚类个数和聚类中心位置,然后利用K均值聚类寻找局部投影区间,对每个聚类进行独立分量分析并投影到低维空间,将低维空间数据排列并重构成一维时间序列。与使用聚类的局部独立分量分析相比,该算法具有自适应性和稳定性。使用数值仿真试验和齿轮故障信号对该算法进行验证,结果表明该算法对此类信号具有良好的降噪效果。An adaptive local independent component analysis algorithm was proposed. In the algorithm, one dimensional time series was reconstructed into a high dimensional trajectory matrix, and then clustered into several clusters using K-means algorithm, in which the number of clusters and the location of each cluster were determined by agglomerative fuzzy K-means clustering. The independent component analysis was applied to each cluster and the trajectory matrix was projected into low-dimensional phase space to obtain low-dimensional data, which were sorted and put in the original order. The final noise reduction result was achieved after reconstructing the one dimensional time series from the sorted data. Comparing with the common method of local independent component analysis using clustering, the proposed algorithm is more adaptive and robust. The algorithm was validated to be effective by numerical simulations and its application in gear fault diagnosis. The results show that the algorithm is capable of dealing with this class of signals.

关 键 词:聚集模糊K均值聚类 局部独立分量分析 降噪 故障诊断 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象