基于焦点折叠的网络模拟拓扑抽象模型  被引量:6

Topology aggregation model based on focus folding for network simulation

在线阅读下载全文

作  者:张兆心[1,2] 杜跃进[1,3] 王克[1] 丁振全[1] 郝志宇[2] 

机构地区:[1]哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001 [2]中国科学院计算技术研究所,北京100190 [3]国家计算机网络应急技术处理协调中心,北京100029

出  处:《通信学报》2012年第7期9-21,共13页Journal on Communications

基  金:国家高技术研究发展计划("863"计划)基金资助项目(2007AA010503);国家自然科学基金资助项目(61100189;61003261);山东省中青年科学家奖励基金资助项目(BS2011DX001);威海市科技攻关基金资助项目(2010-3-96);哈尔滨工业大学科研创新基金资助项目(HIT NSRIF 2011119)~~

摘  要:针对大规模网络模拟的高资源消耗问题提出基于焦点折叠的网络模拟拓扑抽象模型,采用终端节点抽象算法、树型收缩算法和切割边抽象算法,根据抽象系数对拓扑进行抽象。实验结果表明,该技术可减少路由器节点数约30%,减少路由器间链路数约13.74%,总节点和总链路数分别减少约98.48%和96.1%;在250万节点规模的拓扑上进行DDoS攻击模拟仅需400s的时间和2 710MB的内存;以山东省拓扑为例,进行DDoS攻击实验,减少内存约75.34%,降低模拟时间约91.76%;以北京市拓扑为例,进行蠕虫传播实验,减少内存68.84%,减少模拟时间38.64%。可见,该模型可提高模拟的规模和效率,降低模拟的资源开销和模拟运行时间。High resource consumption is the main problem of large-scale network simulation, to solve this problem, the topology aggregation model based on focus folding for network simulation was put forward. According to the abstract coefficients, the terminal node abstract, tree shrinking, and cut-edge abstract algorithm was adopt to abstract the topology. The test results show that, this technology can reduce the router node about 30 percent, the link between routers about 13.74 percent, total node about 98.48 percent, and total link about 96.1 percent. Simulating DDoS on the topology with 2.5 million nodes only need 400s time and 2 710MB memory. Take Shandong topology as an example to simulate DDoS, after abstracted, simulation memory and time have been reduced about 75.34 percent and 91.76 percent respectively. Take Beijing topology as an example to simulate worm, after abstracted, simulation memory and time have been reduced about 68.84 percent and 38.64 percent respectively, which prove that this mode can improve the simulation scale and efficiency and decrease the resource consumption and running time of simulation.

关 键 词:网络模拟 焦点折叠 终端节点抽象 树型收缩 切割边抽象 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象