Global Inference Preserving Projection for Semi-supervised Discriminant Analysis  

Global Inference Preserving Projection for Semi-supervised Discriminant Analysis

在线阅读下载全文

作  者:谷小婧 孙韶媛 方建安 

机构地区:[1]Key Laboratory of Advanced Control and Optimization for Chemical Process,Ministry of Education,East China University of Science and Technology [2]College of Information Science&Technology,Donghua University

出  处:《Journal of Donghua University(English Edition)》2012年第2期144-147,共4页东华大学学报(英文版)

基  金:National Natural Science Foundations of China (No.61072090,60874113)

摘  要:Semi-supervised dimensionality reduction is an important research area for data classification. A new linear dimensionality reduction approach, global inference preserving projection (GIPP), was proposed to perform classification task in semi-supervised case. GIPP provided a global structure that utilized the underlying discriminative knowledge of unlabeled samples. It used path-based dissimilarity measurement to infer the class label information for unlabeled samples and transformd the diseriminant algorithm into a generalized eigenequation problem. Experimental results demonstrate the effectiveness of the proposed approach.Semi-supervised dimensionality reduction is an important research area for data classification.A new linear dimensionality reduction approach,global inference preserving projection(GIPP),was proposed to perform classification task in semi-supervised case.GIPP provided a global structure that utilized the underlying discriminative knowledge of unlabeled samples.It used path-based dissimilarity measurement to infer the class label information for unlabeled samples and transformd the discriminant algorithm into a generalized eigenequation problem.Experimental results demonstrate the effectiveness of the proposed approach.

关 键 词:semi-supervised learning dimensionality reduction manifoM structure 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象