检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:樊高辉[1] 魏明[1] 刘卫超[1] 陈翔[1] 曹艳宾[1]
机构地区:[1]军械工程学院强电磁场环境模拟与防护技术国防科技重点实验室,石家庄050003
出 处:《高压电器》2012年第8期34-39,44,共7页High Voltage Apparatus
基 金:国家自然科学基金(50877079);国防科技重点实验室基金(9140C87030211JB34)~~
摘 要:针对现有机理建模算法普遍存在计算电磁脉冲响应过程过于复杂的问题,为能够给电子设备静电放电电磁脉冲响应计算提供一种简便有效的能量耦合建模方法,设计了脉冲场强测试仪的静电放电辐射实验。用NARX神经网络代替传统NARX网络,依靠遗传算法对网络的初始权值、阈值进行优化,以3.5 kV静电放电实验数据作为建模数据对系统进行非线性辨识,并对4.5 kV静电放电电磁脉冲响应进行预测。建模结果表明,两种模型均能准确预测响应波形,但优化后的NARX神经网络模型精度更高。该建模方法计算过程简单。该方法同样适用于其他电磁脉冲响应建模。For the problem that the computing process of electromagnetic pulse response in the existing mechanism modeling algorithms is very complex, a radiation experiment of electrostatic discharge for pulse field sensor is designecl in order to offer a simple but effective method for computing electromagnetic pulse response of electronic devices. In the modeling, NARX Neural Network (NN NARX) is substituted for the conventional NARX network, and the layer weight matrices and bias vectors are optimized by genetic algorithm (GA). Two models are built and trained on the basis of the 3.5 kV electrostatic discharge experiment data to identify the dynamic characteristics of the system. The electromagnetic pulse response of 4.5 kV electrostatic discharge is predicted by using the models, and the results show that both optimized NN NARX model and conventional NARX model can predict the response wave accurately through comparing the predicted response with the measured data, but the model optimized with NN NARX performs better. The proposed modeling method is easy in use. and also suitable for modeling of other electromagnetic pulse responses.
关 键 词:静电放电电磁脉冲 NARX 遗传算法 非线性辨识
分 类 号:TN03[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222