检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ya Qin SHU Wan Tong LI Nai Wei LIU
机构地区:[1]School of Mathematics and Statistics,Chongqing University of Technology [2]School of Mathematics and Statistics,Lanzhou University [3]School of Mathematics and Informational Science,Yantai University
出 处:《Acta Mathematica Sinica,English Series》2012年第8期1633-1646,共14页数学学报(英文版)
基 金:Supported by NSF of China(Grant No.11031003);NSF of Shandong Province of China(Grant No.ZR2010AQ006)
摘 要:In this paper, we first study the existence of transition fronts (generalized traveling fronts) for reaction-diffusion equations with the spatially heterogeneous bistable nonlinearity. By constructing sub-solution and super-solution we then show that transition fronts are globally exponentially stable for the solutions of the Cauchy problem. Furthermore, we prove that transition fronts are unique up to translation in time by using the monotonicity in time and the exponential decay of such transition fronts.In this paper, we first study the existence of transition fronts (generalized traveling fronts) for reaction-diffusion equations with the spatially heterogeneous bistable nonlinearity. By constructing sub-solution and super-solution we then show that transition fronts are globally exponentially stable for the solutions of the Cauchy problem. Furthermore, we prove that transition fronts are unique up to translation in time by using the monotonicity in time and the exponential decay of such transition fronts.
关 键 词:Reaction-diffusion equation transition fronts UNIQUENESS bistable nonlinearity stability
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15