检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪送[1,2] 王瑛[1] 冯建伟[2] 杜纯[1] 陈盖凯[1]
机构地区:[1]空军工程大学工程学院,陕西西安710038 [2]武警工程大学装备工程学院,陕西西安710086
出 处:《中国安全科学学报》2012年第5期10-16,共7页China Safety Science Journal
基 金:国家自然科学基金资助(71171199)
摘 要:为有效控制复杂系统崩溃,提出一种基于约束熵的复杂系统重要节点崩溃控制方法。通过概述现有事故致因理论及模型,建立分析复杂系统安全事故致因的"认知-约束"模型。针对复杂系统节点众多,关联复杂的本质,指出为预防安全事故,必须在强化安全认知能力的基础上对重要节点进行约束控制。在提取节点重要度评估参数后,设计一种改进的复杂系统节点重要度评估算法。最后,引入约束熵概念,构建抑制复杂系统重要节点崩溃的约束熵度量模型。研究结果表明,存在可量化的用于控制复杂系统崩溃的手段;预防安全事故的关键是将适量的约束熵"引入"重要节点。In order to effectively control the collapse of complex system can be controlled effectively, a constraint entropy-based method for controlling complex system important node collapse was proposed. After summarizing the existing theories and models about accident causation , a cognition-constraint model was built for analyzing the safety accident causation of complex system . For numerous nodes and associa- tions exist in complex system, it was pointed out that in order to prevent safety accident , importance nodes in the complex system must be constrained and controlled on the basis of increasing safety cognition abili- ty. After the evaluation parameters of node importance were extracted, designed an improved complex system node important evaluation algorithm. Finally , the concept of constraint entropy was introduced. A constraint entropy measurement model was built. Research results show that there is a quantifiable means for controlling complex system collapse . The key to preventing safety accident is "introducing" a right amount of constraint entropy into the important node.
关 键 词:复杂系统 约束熵 节点重要度 “认知-约束”模型 崩溃控制
分 类 号:X928.02[环境科学与工程—安全科学] N941.4[自然科学总论—系统科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171