基于改进相关性分析法的配电网络单相接地故障选线  被引量:23

Faulty line selection of single-phase to ground fault in distribution network based on improved correlation analysis method

在线阅读下载全文

作  者:王韶[1] 朱姜峰[1] 

机构地区:[1]输配电装备及系统安全与新技术国家重点实验室(重庆大学电气工程学院),重庆400044

出  处:《电力系统保护与控制》2012年第15期76-81,共6页Power System Protection and Control

基  金:输配电装备及系统安全与新技术国家重点实验室自主研究项目(2007DA10512709212);国家'111'计划项目(B08036)

摘  要:在含有缆线混合线路的中性点经消弧线圈接地的配电系统发生单相接地故障时,各线路零序电流的互相关性用相关性分析不易测度。根据零模电流暂态行波波头对应的奇异信号变化明显的特点,提出一种基于改进相关性分析法的配电网单相接地故障选线方法。该方法从三个方面对相关性分析进行改进。首先,采用零模电流初始行波作为故障特征信号;其次,基于多分辨奇异值分解原理确定相关性分析的数据窗;然后,为抑制信号中的零漂现象,运用pearson积距相关系数法计算相关系数。仿真算例验证了该方法的正确性和有效性。In the distribution system that has the line mixed cable with overhead lines and is neutrally grounded through an arc-suppression coil, the mutual correlation of zero sequence current of lines is not easy to measure by correlation analysis, when single-phase to ground fault occurs. According to the characteristic that singular signal changes significantly corresponding to the transient traveling wave bead of zero-modulus current, this paper proposes a method to select the single-phase to ground fault line in the distribution network based on improved correlation analysis method. The method improves correlation analysis by utilizing three techniques. First, initial traveling wave of the zero-modulus current is used as the fault characteristic signal. Second, the data window for correlation analysis is determined based on the principles of multi-resolution singular value decomposition. Third, correlation coefficients are calculated by employing pearson product-moment correlation coefficient method in order to inhibit the zero drift phenomenon of the signal. The correctness and effectiveness of the presented method are verified through simulation examples.

关 键 词:配电网络 单相接地 故障选线 相关性分析 零模电流行波 零漂 pearson积距相关系数 

分 类 号:TM862[电气工程—高电压与绝缘技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象