Runoff variation and its response to climate change in the Three Rivers Source Region  被引量:17

Runoff variation and its response to climate change in the Three Rivers Source Region

在线阅读下载全文

作  者:ZHANG Yongyong ZHANG Shifeng ZHAI Xiaoyan XlA Jun 

机构地区:[1]Key Laboratory of Water Cycle and Related Land Surface Processes, CAS, Beijing 100101, China [2]State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan430072, China

出  处:《Journal of Geographical Sciences》2012年第5期781-794,共14页地理学报(英文版)

基  金:The National Basic Research Program of China(973 Program),No.2012CB955304;No.2009CB421403

摘  要:Runoff at the three time scales (non-flooding season, flooding season and annual period) was simulated and tested from 1958 to 2005 at Tangnaihai (Yellow River Source Region: YeSR), Zhimenda (Yangtze River Source Region: YaSR) and Changdu (Lancang River Source Region: LcSR) by hydrological modeling, trend detection and comparative analysis. Also, future runoff variations from 2010 to 2039 at the three outlets were analyzed in A1B and B1 scenarios of CSIRO and NCAR climate model and the impact of climate change was tested. The results showed that the annual and non-flooding season runoff decreased significantly in YeSR, which decreased the water discharge to the midstream and down- stream of the Yellow River, and intensified the water shortage in the Yellow River Basin, but the other two regions were not statistically significant in the last 48 years. Compared with the runoff in baseline (1990s), the runoff in YeSR would decrease in the following 30 years (2010-2039), especially in the non-flooding season. Thus the water shortage in the mid- stream and downstream of the Yellow River Basin would be serious continuously. The runoff in YaSR would increase, especially in the flooding season, thus the flood control situation would be severe. The runoff in LcSR would also be greater than the current runoff, and the annual and flooding season runoff would not change significantly, while the runoff variation in the non-flooding season is uncertain. It would increase significantly in the B1 scenario of CSIRO model but decrease significantly in B1 scenario of NCAR model. Furlhermore, the most sensitive region to climate change is YaSR, followed by YeSR and LcSR.Runoff at the three time scales (non-flooding season, flooding season and annual period) was simulated and tested from 1958 to 2005 at Tangnaihai (Yellow River Source Region: YeSR), Zhimenda (Yangtze River Source Region: YaSR) and Changdu (Lancang River Source Region: LcSR) by hydrological modeling, trend detection and comparative analysis. Also, future runoff variations from 2010 to 2039 at the three outlets were analyzed in A1B and B1 scenarios of CSIRO and NCAR climate model and the impact of climate change was tested. The results showed that the annual and non-flooding season runoff decreased significantly in YeSR, which decreased the water discharge to the midstream and down- stream of the Yellow River, and intensified the water shortage in the Yellow River Basin, but the other two regions were not statistically significant in the last 48 years. Compared with the runoff in baseline (1990s), the runoff in YeSR would decrease in the following 30 years (2010-2039), especially in the non-flooding season. Thus the water shortage in the mid- stream and downstream of the Yellow River Basin would be serious continuously. The runoff in YaSR would increase, especially in the flooding season, thus the flood control situation would be severe. The runoff in LcSR would also be greater than the current runoff, and the annual and flooding season runoff would not change significantly, while the runoff variation in the non-flooding season is uncertain. It would increase significantly in the B1 scenario of CSIRO model but decrease significantly in B1 scenario of NCAR model. Furlhermore, the most sensitive region to climate change is YaSR, followed by YeSR and LcSR.

关 键 词:climate change runoff variation SWAT (Soil and Water Assessment Tool) Mann-Ke:~dall test ThreeRivers Source Region 

分 类 号:P333.1[天文地球—水文科学] P467[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象