检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马建军[1] 刘齐建[1] 王连华[1] 赵跃宇[1]
出 处:《工程力学》2012年第8期58-62,共5页Engineering Mechanics
基 金:国家自然科学基金项目(50808075;10972073;11032004);湖南省科技计划项目(2010FJ4145)
摘 要:基于经典Winkler地基模型及Euler-Bernoulli梁理论,考虑梁的几何非线性效应,运用Newton第二定律建立了弹性地基上有限长梁的非线性运动方程。采用Galerkin方法对运动方程进行一阶模态截断,进而利用多尺度法求得了该系统自由振动的一阶近似解。揭示了两端简支梁的非线性自由振动特性,分析了弹性模量、长细比及地基刚度系数等参数对系统固有频率的影响。并通过该系统的位移时程曲线,分析了阻尼对弹性地基上梁运动特性的影响。The non-linear free vibration of a finite-length beam on the elastic foundation is investigated. Based on the Winkler foundation model and Euler-Bernoulli beam theory, the nonlinear motion equation of the finite-length beam on an elastic foundation with geometric nonlinearity is deduced based on the Newton's Second Law. The first-order mode truncation of the vibration function is obtained using the Galerkin method. The approximate solution of the free vibration of the finite-length beam is derived utilizing the multi-scale method to illustrate the behaviour of the non-linear free vibration. The effects of the slenderness ratio of beam, the modulus of elastic system and the stiffness of foundation on the natural frequency of the hinged-hinged beam on the Winkler foundation are analyzed. The influence of damping of the soil-beam system on the motion of the beam is also discussed.
关 键 词:WINKLER模型 Euler.Bernoulli梁 几何非线性 多尺度方法 时程曲线
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90