Microstructure and Impact Wear Resistance of TiN Reinforced High Manganese Steel Matrix  被引量:15

Microstructure and Impact Wear Resistance of TiN Reinforced High Manganese Steel Matrix

在线阅读下载全文

作  者:MA You-ping LI Xiu-lan WANG Cheng-hui LU Lu 

机构地区:[1]School of Metallurgical Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,Shaanxi,China

出  处:《Journal of Iron and Steel Research International》2012年第7期60-65,共6页

基  金:Item Sponsored by Office of Education of Shaanxi Province of China(08JK345);Programs for Industry Development of Shaanxi Province of China(2008K06-18)

摘  要:A high-manganese austenitic steel matrix (Mn13) composite reinforced with TiN ceramic particles was synthesized by means of Vacuum-Evaporation Pattern Casting (V-EPC). The composite microstructure and interface bonding of TiN/matrix were analyzed utilizing optical microscope (OM) and X-ray diffraction (XRD). The effects of different volume fraction of TiN on impact wear resistance were evaluated by MLD-10 impact wear test. The results showed that TiN was evenly distributed in composite layer and had a good interface bonding with matrix when the volume fractions of TiN were 27% and 36% respectively. However, cast defects and TiN agglomeration occurred when the TiN volume fraction increased to 48~. Compared with high-manganese austenitic steel (Mnl3), the im- pact wear resistance of the TiN-reinforced composite is better. In small impact load conditions, composite layer can effectively resist abrasives wear and TiN particles played an important role in determining impact wear resistance of composite layer. In large impact load, the synergistic roles of spalling of TiN particles and the increase of work hardening of Mn13 based material are responsible for impact wear resistance.A high-manganese austenitic steel matrix (Mn13) composite reinforced with TiN ceramic particles was synthesized by means of Vacuum-Evaporation Pattern Casting (V-EPC). The composite microstructure and interface bonding of TiN/matrix were analyzed utilizing optical microscope (OM) and X-ray diffraction (XRD). The effects of different volume fraction of TiN on impact wear resistance were evaluated by MLD-10 impact wear test. The results showed that TiN was evenly distributed in composite layer and had a good interface bonding with matrix when the volume fractions of TiN were 27% and 36% respectively. However, cast defects and TiN agglomeration occurred when the TiN volume fraction increased to 48~. Compared with high-manganese austenitic steel (Mnl3), the im- pact wear resistance of the TiN-reinforced composite is better. In small impact load conditions, composite layer can effectively resist abrasives wear and TiN particles played an important role in determining impact wear resistance of composite layer. In large impact load, the synergistic roles of spalling of TiN particles and the increase of work hardening of Mn13 based material are responsible for impact wear resistance.

关 键 词:high manganese steel TIN impact wear V-EPC cast-penetration 

分 类 号:TG174.453[金属学及工艺—金属表面处理] TD453[金属学及工艺—金属学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象