机构地区:[1]Key Laboratory of Groundwater Resources and Environment,Ministry of Education,Jilin University,Changchun 130021,China [2]School of Earth Sciences,Cardiff University,Cardiff,CFIO 3YE,UK
出 处:《Journal of Environmental Sciences》2012年第8期1418-1424,共7页环境科学学报(英文版)
基 金:supported by the National Natural Science Foundation of China (No. 40902068,41002077);the Science Frontiers and Innovation of Interdisciplinary of Jilin University,China (No. 201103112)
摘 要:Aquifer recharge, which uses urban stormwater, is an effective technique to control the negative effects of groundwater overexploitation, while clogging problems in infiltration systems remain the key restricting factor in broadening its practice. Quantitative understanding of the clogging process is still very poor. A laboratory study was conducted to understand surface physical clogging processes, with the primary aim of developing a model for predicting suspended solid clogging processes before aquifer recharge projects start. The experiments investigated the clogging characteristics of different suspended solid sizes in recharge water by using a series of one-dimensional fine quartz sand columns. The results showed that the smaller the suspended particles in recharge water, the farther the distance of movement and the larger the scope of clogging in porous media. Clogging extents in fine sand were 1 cm, for suspended particle size ranging from 0.075 to 0.0385 mm, and 2 cm, for particles less than 0.0385 mm. In addition, clogging development occurred more rapidly for smaller suspended solid particles. It took 48, 42, and 36 hr respectively, for large-, medium-, and small-sized particles to reach pre-determined clogging standards. An empirical formula and iteration model for the surface clogging evolution process were derived. The verification results obtained from stormwater recharge into fine sand demonstrated that the model could reflect the real laws of the surface clogging process.Aquifer recharge, which uses urban stormwater, is an effective technique to control the negative effects of groundwater overexploitation, while clogging problems in infiltration systems remain the key restricting factor in broadening its practice. Quantitative understanding of the clogging process is still very poor. A laboratory study was conducted to understand surface physical clogging processes, with the primary aim of developing a model for predicting suspended solid clogging processes before aquifer recharge projects start. The experiments investigated the clogging characteristics of different suspended solid sizes in recharge water by using a series of one-dimensional fine quartz sand columns. The results showed that the smaller the suspended particles in recharge water, the farther the distance of movement and the larger the scope of clogging in porous media. Clogging extents in fine sand were 1 cm, for suspended particle size ranging from 0.075 to 0.0385 mm, and 2 cm, for particles less than 0.0385 mm. In addition, clogging development occurred more rapidly for smaller suspended solid particles. It took 48, 42, and 36 hr respectively, for large-, medium-, and small-sized particles to reach pre-determined clogging standards. An empirical formula and iteration model for the surface clogging evolution process were derived. The verification results obtained from stormwater recharge into fine sand demonstrated that the model could reflect the real laws of the surface clogging process.
关 键 词:STORMWATER aquifer recharge suspended solids CLOGGING
分 类 号:TQ546.2[化学工程—煤化学工程] TU991.114[建筑科学—市政工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...