Relationships between the Limit of Predictability and Initial Error in the Uncoupled and Coupled Lorenz Models  被引量:6

Relationships between the Limit of Predictability and Initial Error in the Uncoupled and Coupled Lorenz Models

在线阅读下载全文

作  者:丁瑞强 李建平 

机构地区:[1]State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences

出  处:《Advances in Atmospheric Sciences》2012年第5期1078-1088,共11页大气科学进展(英文版)

基  金:sprovided jointly by the 973 Program (Grant No.2010CB950400);National Natural Science Foundation of China (Grant Nos. 40805022 and 40821092)

摘  要:In this study, the relationship between the limit of predictability and initial error was investigated using two simple chaotic systems: the Lorenz model, which possesses a single characteristic time scale, and the coupled Lorenz model, which possesses two different characteristic time scales. The limit of predictability is defined here as the time at which the error reaches 95% of its saturation level; nonlinear behaviors of the error growth are therefore involved in the definition of the limit of predictability. Our results show that the logarithmic function performs well in describing the relationship between the limit of predictability and initial error in both models, although the coefficients in the logarithmic function were not constant across the examined range of initial errors. Compared with the Lorenz model, in the coupled Lorenz model in which the slow dynamics and the fast dynamics interact with each other--there is a more complex relationship between the limit of predictability and initial error. The limit of predictability of the Lorenz model is unbounded as the initial error becomes infinitesimally small; therefore, the limit of predictability of the Lorenz model may be extended by reducing the amplitude of the initial error. In contrast, if there exists a fixed initial error in the fast dynamics of the coupled Lorenz model, the slow dynamics has an intrinsic finite limit of predictability that cannot be extended by reducing the amplitude of the initial error in the slow dynamics, and vice versa. The findings reported here reveal the possible existence of an intrinsic finite limit of predictability in a coupled system that possesses many scales of time or motion.In this study, the relationship between the limit of predictability and initial error was investigated using two simple chaotic systems: the Lorenz model, which possesses a single characteristic time scale, and the coupled Lorenz model, which possesses two different characteristic time scales. The limit of predictability is defined here as the time at which the error reaches 95% of its saturation level; nonlinear behaviors of the error growth are therefore involved in the definition of the limit of predictability. Our results show that the logarithmic function performs well in describing the relationship between the limit of predictability and initial error in both models, although the coefficients in the logarithmic function were not constant across the examined range of initial errors. Compared with the Lorenz model, in the coupled Lorenz model in which the slow dynamics and the fast dynamics interact with each other--there is a more complex relationship between the limit of predictability and initial error. The limit of predictability of the Lorenz model is unbounded as the initial error becomes infinitesimally small; therefore, the limit of predictability of the Lorenz model may be extended by reducing the amplitude of the initial error. In contrast, if there exists a fixed initial error in the fast dynamics of the coupled Lorenz model, the slow dynamics has an intrinsic finite limit of predictability that cannot be extended by reducing the amplitude of the initial error in the slow dynamics, and vice versa. The findings reported here reveal the possible existence of an intrinsic finite limit of predictability in a coupled system that possesses many scales of time or motion.

关 键 词:limit of predictability initial error Lorenz model coupled Lorenz model 

分 类 号:P45[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象