检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中南大学学报(自然科学版)》2012年第6期2295-2299,共5页Journal of Central South University:Science and Technology
基 金:国家自然科学基金资助项目(51108460);中国博士后科学基金面上资助项目(2012M511409);教育部博士点基金资助项目(20010533004);中南大学博士后基金资助项目(2010年)
摘 要:提出一种分析框架结构弹塑性响应的新方法即增量内力塑性系数法。由该方法直接得到结构弹塑性增量割线刚度矩阵,并据此提出直接迭代算法求解结构增量平衡方程。研究结果表明:直接迭代算法与经典的牛顿-拉夫逊方法相比,它不用数值积分形成结构弹塑性切线刚度矩阵,也无需在每次迭代步中计算结构整体不平衡力,简化了计算过程;弹塑性增量割线刚度矩阵可以显式给出,减少了计算工作量,且计算结果与经典解析解以及其他数值解十分接近;采用增量内力塑性系数法分析一般平面框架只需采用至多2个单元离散框架构件就可以得到足够的计算精度。An accurate and efficient numerical procedure,referred to as the plastic-coefficient method based on the incremental member forces,was presented for the nonlinear inelastic analysis of planar frames.Based on the elasto-plastic stiffness matrix derived from this new method,the direct-iteration solution scheme was developed to solve the incremental equilibrium equations.The results show that compared to the Newton-Raphson method,the direct-iteration solution scheme is unnecessary to construct the tangent stiffness matrix or to calculate the out-of-balance force during each iterative step.The elasto-plastic stiffness matrix is explicitly given herein,hence,the entire analysis procedure is greatly simplified without any loss of accuracy,and the results are very close to the analytical results from limit analysis and the numerical results from other methods.The proposed method can be applied to analyze frames with sufficient accuracy using at most two elements per member.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.227