检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广西大学计算机与电子信息学院,广西南宁530004
出 处:《计算机工程与设计》2012年第8期3134-3138,共5页Computer Engineering and Design
基 金:广西科技攻关与新产品试制基金项目(桂科攻10123012-7)
摘 要:针对传统帧差法和背景差分法对运动对象检测不准确等不足,提出了一种自适应背景筛选的运动对象检测算法。该算法在采用帧差法构建的背景中标注出原图存在运动对象的区域,筛选当前运动对象区域未被标注且距当前时刻最近的背景与当前帧进行差分,从而提取前景运动目标。与帧差背景结合方法相比,该方法能更好解决因运动对象静止后融入背景建模而导致的检测对象不准确问题,且算法简单,易于实现,满足实时监控要求。实验结果验证了该算法的有效性。To improve the accuracy of the traditional coterminous frame differencing method and background subtraction method in moving objects detection. A moving objects detection algorithm with self-adaptive background screening is proposed. The area is marked, where the moving object exist in the graph, on the background in the process of constructing background model through the coterminous frame differencing method,. Background is screened that haven' t marked in the current area of moving object and the most close to the present moment, extract the foreground' s moving target. Compared with the traditional method which combine the coterminous frame differencing and background subtraction, the proposed algorithm is more good at deal with the matter, which detection is not accurate due to moving objects. It' s simple and easy to, satisfy the requirements in real-time monitoring. Experimental results verify the effectiveness of the algorithm.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.107.69