First-order character of the displacive structural transition in BaWO_4  

First-order character of the displacive structural transition in BaWO_4

在线阅读下载全文

作  者:谭大勇 肖万生 周微 陈鸣 熊小林 宋茂双 

机构地区:[1]Key Laboratory of Mineralogy and Metallogeny,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences

出  处:《Chinese Physics B》2012年第8期365-373,共9页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant Nos. 11179030 and 90714011);the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-SW-N20)

摘  要:Nearly all displacive transitions have been considered to be continuous or second order, and the rigid unit mode (RUM) provides a natural candidate for the soft mode. However, in-situ X-ray diffraction and Raman measurements show clearly the first-order evidences for the scheelite-to-fergusonite displacive transition in SaWO4: a 1.6% volume collapse, coexistence of phases, and hysteresis on release of pressure. Such first-order signatures are found to be the same as the soft modes in BaWO4, which indicates the scheelite-to-fergusonite displacive phase transition hides a deeper physical mechanism. By the refinement of atomic displacement parameters, we further show that the first-order character of this phase transition stems from a coupling of large compression of soft BaOs polyhedrons to the small displacive distortion of rigid WO4 tetrahedrons. Such a coupling will lead to a deeper physical insight in the phase transition of the common scheelite-structured compounds.Nearly all displacive transitions have been considered to be continuous or second order, and the rigid unit mode (RUM) provides a natural candidate for the soft mode. However, in-situ X-ray diffraction and Raman measurements show clearly the first-order evidences for the scheelite-to-fergusonite displacive transition in SaWO4: a 1.6% volume collapse, coexistence of phases, and hysteresis on release of pressure. Such first-order signatures are found to be the same as the soft modes in BaWO4, which indicates the scheelite-to-fergusonite displacive phase transition hides a deeper physical mechanism. By the refinement of atomic displacement parameters, we further show that the first-order character of this phase transition stems from a coupling of large compression of soft BaOs polyhedrons to the small displacive distortion of rigid WO4 tetrahedrons. Such a coupling will lead to a deeper physical insight in the phase transition of the common scheelite-structured compounds.

关 键 词:BaWO4 pressure-induced phase transitions X-ray diffraction Raman scattering 

分 类 号:P618.67[天文地球—矿床学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象