检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学电子科学与工程学院,长沙410073
出 处:《电子与信息学报》2012年第8期1885-1892,共8页Journal of Electronics & Information Technology
基 金:国家自然科学基金(60972121);全国优秀博士学位论文作者专项资金(201046);新世纪优秀人才支持计划(NCET-10-0895)资助课题
摘 要:通过压缩感知(Compressed Sensing,CS)算法可以实现对目标的稀疏成像,并获取其空间散射结构用于目标鉴别和识别。该文针对穿透地表成像的前视超宽带虚拟孔径雷达(Forward Looking Virtual Aperture Radar,FLVAR)实测数据,以CS理论为基础对地雷目标进行稀疏成像,利用地雷目标电磁散射的稀疏性实现其散射结构的提取,将目标散射特性转化为与物理结构相关的几何特征,并基于该特征进行目标的分类鉴别。新方法不仅拓展了地雷鉴别的新思路,而且也为压缩感知在目标散射结构提取和目标鉴别上的应用进行了初步有效的尝试。The Compressed Sensing (CS) technique is an effective approach for sparse imaging and extraction of scattering structure of targets, which can be applied to target discrimination and recognition. Based on the experimental data from the Forward Looking Virtual Aperture Radar (FLVAR) system, the scattering structures of landmines can be acquired by CS sparse imaging algorithm. Then the sparse scattering structures are parameterized to form the features exploited by classifiers later. In this paper, a novel approach to target discrimination is proposed, which transforms the scattering of landmines to geometrical features, which have strong relationship with its physical characteristics. This new approach not only broadens the methodology for landmine discrimination, but also explores a new way of applying sparse scattering structures to target discrimination.
分 类 号:TN959.73[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.121