机构地区:[1]State Key Laboratory of Robotics and System(Harbin Institute of Technology)
出 处:《Journal of Central South University》2012年第7期1869-1882,共14页中南大学学报(英文版)
基 金:Project(2010DFR70270) supported by the International Science and Technology Cooperation Project with Russia;Projects(50975059,61005080) supported by the National Natural Science Foundation of China;Project(B07018) supported by "111" Program of China;Project(SKLRS200801A02) supported by the Foundation of State Key Laboratory of Robotics and System (Harbin Institute of Technology),China;Project(HIT2009061) supported by the Key Subject Laboratory Open Fund of China
摘 要:In order to obtain a new-type short cylindrical cup-shaped flexspline that can be applied to space mechanisms,the APDL language of ANSYS software was employed to develop a parameterized equivalent contact model between a flexspline and a wave generator. The validity of the parameterized equivalent contact model was verified by comparing the results of the analytic value of the contact model and the value calculated by the theoretical formula. The curvilinear trend of stress was obtained by changing the structural parameter of the flexspline. Based on the curvilinear trend of stress,multi-objective optimizations of key structural parameters were achieved. Flexspline,wave generator,and circular spline of a new 32-type short cylindrical cup-shaped harmonic reducer were designed and manufactured. A performance test bench to carry out tests on the harmonic reducer was designed. Contrast experiments were implemented to determine the efficiency of the new 32-type short cylindrical cup-shaped harmonic reducer and the conventional 32-type harmonic reducer under different conditions. The experimental results reveal that there is approximately equality in terms of efficiency between the new 32-type short cylindrical cup-shaped harmonic reducer and the conventional 32-type harmonic reducer. The volume of the flexspline of the new 32-type short cylindrical cup-shaped harmonic reducer is reduced by approximately 30% through multi-objective optimization. When the new 32-type short cylindrical cup-shaped harmonic reducer is used on the wheel of a rover prototype,the mass of the wheel hub is decreased by 0.42 kg. Test analysis of wheel motion verifies that the new 32-type short cylindrical cup-shaped harmonic reducer can meet the requirements regarding bearing capacity and efficiency.In order to obtain a new-type short cylindrical cup-shaped flexspline that can be applied to space mechanisms, the APDL language of ANSYS software was employed to develop a parameterized equivalent contact model between a flexspline and a wave generator. The validity of the parameterized equivalent contact model was verified by comparing the results of the analytic value of the contact model and the value calculated by the theoretical formula. The curvilinear trend of stress was obtained by changing the structural parameter of the flexspline. Based on the curvilinear trend of stress, multi-objective optimizations of key structural parameters were achieved. Flexspline, wave generator, and circular spline of a new 32-type short cylindrical cup-shaped harmonic reducer were designed and manufactured. A performance test bench to carry out tests on the harmonic reducer was designed. Contrast experiments were implemented to determine the efficiency of the new 32-type short cylindrical cup-shaped harmonic reducer and the conventional 32-type harmonic reducer under different conditions. The experimental results reveal that there is approximately equality in terms of efficiency between the new 32-type short cylindrical cup-shaped harmonic reducer and the conventional 32-type harmonic reducer. The volume of the flexspline of the new 32-type short cylindrical cup-shaped harmonic reducer is reduced by approximately 30% through multi-objective optimization. When the new 32-type short cylindrical cup-shaped harmonic reducer is used on the wheel of a rover prototype, the mass of the wheel hub is decreased by 0.42 kg. Test analysis of wheel motion verifies that the new 32-type short cylindrical cup-shaped harmonic reducer can meet the requirements regarding bearing capacity and efficiency.
关 键 词:harmonic drive FLEXSPLINE structural parameter multi-objective optimization
分 类 号:TH132.46[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...