检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:顾清[1] 邓劲松[1] 陆超[1] 石媛媛 王珂[1] 沈掌泉[1]
机构地区:[1]浙江大学污染环境修复与生态健康教育部重点实验室,杭州310058 [2]百色市烟草公司,百色533000
出 处:《农业机械学报》2012年第8期170-174,159,共6页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家自然科学基金资助项目(31172023;30800703);国家高技术研究发展计划(863计划)资助项目(2006AA10Z204)
摘 要:使用扫描仪获取水稻叶片图像,综合运用数字图像处理技术、参数优选和分类方法,研究了不同氮素水平水稻叶片的光谱和形状特征,并进行了氮营养的诊断与识别。研究利用面向对象的分类方法提取叶尖部位的黄化面积比例,指数回归分析结果显示此参数与叶片氮含量具有很高的相关性(R2=0.863)。提取整叶和叶尖的颜色参数并分别与叶片氮含量进行指数回归分析,发现叶尖部位的颜色特征能更好地反映叶片的氮素营养状况。采用CfsSubsetEval和Scatter search相结合方法对特征进行约简与优化,根据选择结果结合支持向量机方法进行模式识别。精度检验结果显示该方法对缺氮和正常叶片的正确识别率较高,随氮素水平的升高,正确识别率降低,对过量水平的正确识别率较低,叶面积在缺氮和正常模式下能对识别起到很好的辅助作用。The leaves of rice were captured by scanner. Integrated method combining digital image processing, parameter optimization and classification was used to explore leaves spectral and shape characteristics which were adopted to diagnose and recognize rice nitrogen nutrition. Proportion of etiolated area in the tip of leaf was extracted by method of object-oriented classification. The results of exponential regression analysis showed high correlation between tip etiolated area proportion and leaf nitrogen concentration (R2 = 0. 863). The color indices of tip as well as whole leaves were extracted and exponential regression analysis with leaf nitrogen concentration was made, which illustrated the better performance of representation of rice nitrogen nutrition with tip information. Optimal selection of subset by means of CfsSubsetEval and Scatter search combined with support vector machine were used for pattern recognition. The result of accuracy assessment indicated that nitrogen deficiency and healthy leaves could be easily recognized and the accuracy" descended with the improvement of nitrogen treatment. The accuracy of excessive nitrogen nutrition status was low. The leaf area could be a favorable assistant for recognition under deficient and healthy status.
分 类 号:S123[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.244