大豆豆荚炭疽病严重度的光谱检测  被引量:5

Spectral Detection on Disease Severity of Soybean Pod Anthracnose

在线阅读下载全文

作  者:冯雷[1] 陈双双[1] 冯斌[2] 何勇[1] 楼兵干[3] 

机构地区:[1]浙江大学生物系统工程与食品科学学院,杭州310058 [2]全国农业展览馆,北京100026 [3]浙江大学生物技术研究所,杭州310058

出  处:《农业机械学报》2012年第8期175-179,192,共6页Transactions of the Chinese Society for Agricultural Machinery

基  金:国家高技术研究发展计划(863计划)资助项目(2011AA100705);"十二五"国家科技支撑计划资助项目(2011BAD21B04);国家自然科学基金资助项目(61075017;60605011);浙江省科技厅重点农业资助项目(2006C22022);浙江省重大科技专项重点农业资助项目(2009C12002);浙江省自然科学基金资助项目(Y5090044)

摘  要:利用可见/近红外光谱技术对大豆豆荚炭疽病严重度进行检测。分别采用主成分分析法(PCA)结合反向传输人工神经网络(BPNN)和连续投影算法(SPA)结合BPNN 2种组合模型进行分析预测。利用SPA的数据压缩功能和BPNN的学习预测能力实现对大豆豆荚炭疽病严重度的检测。以样本检测的准确率作为模型评价指标。实验结果显示SPA-BPNN的检测准确率最高,为90%。研究表明,SPA能够有效地进行波长选择,使BPNN模型获得满意的检测率。Visible and near infrared reflectance (Vis/NIR) spectroscopy technique was applied to detect the disease severity of soybeanpods anthracnose. Principal component analysis (PCA) combined with back propagation neural network (BPNN) and successive projections algorithm (SPA) combined with BPNN were used as two methods to analyze and prediction of the disease severity of soybean pods anthracnose. Data compression of SPA and learning ability of BPNN was used to achieve the detection of anthracnose severity on soybean pods. The accurate rate of identification was used to evaluate the model. The results of experiment showed that SPA - BPNN was the better calibration model and the accurate rate of detection was 90%. According to the results, SPA was a powerful way for the selection of effective wavelengths, and BPNN model could obtain the accurate detection.

关 键 词:大豆 可见/近红外光谱 连续投影算法 反向传输人工神经网络 主成分分析 偏最小二乘法 

分 类 号:O657.3[理学—分析化学] S435.621.22[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象