检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学航天与材料工程学院,长沙410073
出 处:《航天控制》2012年第4期73-76,共4页Aerospace Control
基 金:教育部"新世纪优秀人才支持计划"项目(NCET-06-09278);湖南省自然科学基金资助项目(08JJ4023)
摘 要:以某型液体火箭发动机为研究对象,根据其传感器的故障特性,提出了基于BP神经网络的传感器故障检测与数据恢复算法。通过定义的传感器置信度来判断传感器是否发生故障,以及确定故障传感器,利用已训练好的神经网络结构对故障传感器进行数据恢复。研究内容能够实现传感器的故障检测、定位与补偿,能够有效提高发动机故障检测方法的可靠性和鲁棒性。Based on the back propagation neural network, the failure detection and data accommodation algorithm of sensor for liquid-propellant rocket engine is developed according to the failure characteristics of sensor. The confidence level is defined to detect the failure of sensor and identify the failure sensor, and the trained neural network structure is used to accommodate it. Regarding the research, the failure detection, identification, and accommodation of sensor can be realized and the reliability and robustness of fault detection method of engine are improved.
分 类 号:V434[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.52