Element yield rate prediction in ladle furnace based on improved GA-ANFIS  被引量:3

Element yield rate prediction in ladle furnace based on improved GA-ANFIS

在线阅读下载全文

作  者:徐喆 毛志忠 

机构地区:[1]School of Information Science and Engineering,Northeastern University [2]State Key Laboratory of Integrated Automation for Process Industries(Northeastern University)

出  处:《Journal of Central South University》2012年第9期2520-2527,共8页中南大学学报(英文版)

基  金:Projects(2007AA041401,2007AA04Z194) supported by the National High Technology Research and Development Program of China

摘  要:The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and the sample data that are used to establish data-driven models are always insufficient.Aiming at this problem,a combined method of genetic algorithm(GA) and adaptive neuro-fuzzy inference system(ANFIS) is proposed and applied to element yield rate prediction in ladle furnace(LF).In order to get rid of the over reliance upon data in data-driven method and act as a supplement of inadequate samples,smelting experience is integrated into prediction model as fuzzy empirical rules by using the improved ANFIS method.For facilitating the combination of fuzzy rules,feature construction method based on GA is used to reduce input dimension,and the selection operation in GA is improved to speed up the convergence rate and to avoid trapping into local optima.The experimental and practical testing results show that the proposed method is more accurate than other prediction methods.The traditional prediction methods of element yield rate can be divided into experience method and data-driven method. But in practice, the experience formulae are found to work only under some specific conditions, and the sample data that are used to establish data-driven models are always insufficient. Aiming at this problem, a combined method of genetic algorithm (GA) and adaptive neuro-fuzzy inference system (ANFIS) is proposed and applied to element yield rate prediction in ladle furnace (LF). In order to get rid of the over reliance upon data in data-driven method and act as a supplement of inadequate samples, smelting experience is integrated into prediction model as fuzzy empirical rules by using the improved ANFIS method. For facilitating the combination of fuzzy rules, feature construction method based on GA is used to reduce input dimension, and the selection operation in GA is improved to speed up the convergence rate and to avoid trapping into local optima. The experimental and practical testing results show that the proposed method is more accurate than other prediction methods.

关 键 词:genetic algorithm adaptive neuro-fuzzy inference system ladle furnace element yield rate PREDICTION 

分 类 号:TF769.2[冶金工程—钢铁冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象