检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Information Science and Engineering,Northeastern University [2]State Key Laboratory of Integrated Automation for Process Industries(Northeastern University)
出 处:《Journal of Central South University》2012年第9期2520-2527,共8页中南大学学报(英文版)
基 金:Projects(2007AA041401,2007AA04Z194) supported by the National High Technology Research and Development Program of China
摘 要:The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and the sample data that are used to establish data-driven models are always insufficient.Aiming at this problem,a combined method of genetic algorithm(GA) and adaptive neuro-fuzzy inference system(ANFIS) is proposed and applied to element yield rate prediction in ladle furnace(LF).In order to get rid of the over reliance upon data in data-driven method and act as a supplement of inadequate samples,smelting experience is integrated into prediction model as fuzzy empirical rules by using the improved ANFIS method.For facilitating the combination of fuzzy rules,feature construction method based on GA is used to reduce input dimension,and the selection operation in GA is improved to speed up the convergence rate and to avoid trapping into local optima.The experimental and practical testing results show that the proposed method is more accurate than other prediction methods.The traditional prediction methods of element yield rate can be divided into experience method and data-driven method. But in practice, the experience formulae are found to work only under some specific conditions, and the sample data that are used to establish data-driven models are always insufficient. Aiming at this problem, a combined method of genetic algorithm (GA) and adaptive neuro-fuzzy inference system (ANFIS) is proposed and applied to element yield rate prediction in ladle furnace (LF). In order to get rid of the over reliance upon data in data-driven method and act as a supplement of inadequate samples, smelting experience is integrated into prediction model as fuzzy empirical rules by using the improved ANFIS method. For facilitating the combination of fuzzy rules, feature construction method based on GA is used to reduce input dimension, and the selection operation in GA is improved to speed up the convergence rate and to avoid trapping into local optima. The experimental and practical testing results show that the proposed method is more accurate than other prediction methods.
关 键 词:genetic algorithm adaptive neuro-fuzzy inference system ladle furnace element yield rate PREDICTION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.33.133