检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长沙民政职业技术学院软件学院,长沙410004 [2]国防科学技术大学计算机学院,长沙410073 [3]北京图形研究所,北京100029
出 处:《计算机应用》2012年第9期2588-2591,共4页journal of Computer Applications
基 金:国家自然基金资助项目(61005084);教育部高等教育博士点基金资助项目(20114307120032);湖南省教育厅科技项目(11C0076)
摘 要:尺度不变特征变换(SIFT)算法提取的人脸特征具有一定的鲁棒性,但存在数据维数过高和计算过于复杂的问题。为此,提出一种基于直接局部保持投影-尺度不变特征变换(DLPP-SIFT)的人脸识别算法。首先采用SIFT算法进行特征提取,然后结合子空间方法局部保持投影(LPP)进行降维,利用直接对角化方法求取特征矩阵,解决了LPP的奇异值问题。在ORL和FERET人脸库的实验结果表明,DLPP-SIFT算法可显著减少计算复杂度和特征匹配时间,与SIFT、主成分分析(PCA)-SIFT、LPP-SIFT相比,具有更好的鲁棒性。The Scale Invariant Feature Transform (SIFT) algorithm is robust to the feature extraction of face image. However, the feature data derived by SIFT is of high dimension, and is diffieuh to be handled. Therefore, a Direct Locality Preserving Projections-SIFT (DLPP-SIFT) algorithm was proposed. In the algorithm, SIFT was used to extract feature, and the subspace method with Locality Preserving Projections (LPP) was utilized for dimension reduction. This algorithm solved locality preserving problem via simultaneous diagonalization; therefore, the singularity of the matrix was avoided. The experiments on ORL and FERET face databases show that the proposed algorithm reduces the computation complexity and matching time of features successfully, and is more robust than SIFT, Principal Component Analysis (PCA) -SIFT and LPPSIFT methods.
关 键 词:人脸识别 子空间 局部保持投影 尺度不变特征变换
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200