检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谷文祥[1,2] 姜蕴晖[1] 周俊萍[1] 殷明浩[1]
机构地区:[1]东北师范大学计算机科学与信息技术学院,吉林长春130117 [2]长春建筑学院基础教学部,吉林长春130607
出 处:《智能系统学报》2012年第3期241-245,共5页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金资助项目(61070084);国家自然科学青年基金资助项目(60803102);中央高校基本科研业务费专项资金资助项目(11QNJJ006)
摘 要:最坏情况下MaxSAT问题上界的研究已成为一个热门的研究领域.与MaxSAT问题相对的是MinSAT问题,在求解某些组合优化问题时,将其转化为MinSAT问题比转化为MaxSAT问题有着更快的速度,因此对MinSAT问题进行研究.针对Min-2SAT问题提出算法MinSATAlg,该算法首先利用化简算法Simplify对公式进行化简,然后通过分支树的方法对不同情况的子句进行分支.从子句数目的角度分析算法的时间复杂度并证明Min-2SAT问题可在O(1.134 3m)时间内求解,对于每个变量至多出现在3个2-子句中的情况,得到最坏情况下的上界为O(1.122 5n),其中n为变量的数目.The rigorous theoretical analyses of algorithms for solving the upper bounds of maximum satisfiability(MaxSAT) problems have been proposed in research literature.The opposite problem of MaxSAT is the minimum satisfiability(MinSAT) problem.Solving some combinatorial optimization problems by reducing them to MinSAT form may be substantially faster than reducing them to MaxSAT form,so the MinSAT problem was researched in this paper.An algorithm(MinSATAlg) was presented for the minimum two-satisfiability(Min-2SAT) problem.In this paper,first,the simplification algorithm Simplify was used for simplification of formulas.Secondly,the branching tree method was used for branching on different kinds of clauses.It was proven that this algorithm can solve the Min-2SAT problem in O(1.134 3m),regarding the number of clauses as parameters.The upper bound in the worst case was derived as O(1.122 5n),where n is the number of variables in an input formula for a particular case of Min-2SAT in which each variable appears in three 2-clauses at most.
关 键 词:MaxSAT MinSAT Min-2SAT MaxSAT问题的上界 Min-2SAT问题的上界 子句数目 分支树
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200