Experimental and CFD Studies on the Performance of Microfiltration Enhanced by a Turbulence Promoter  被引量:2

湍流促进器强化微滤过程的实验与CFD模拟研究(英文)

在线阅读下载全文

作  者:刘元法 贺高红 丁路辉 窦红 鞠佳 李保军 

机构地区:[1]State Key Laboratory of Fine Chemicals,R&D Center of Membrane Science and Technology,School of Chemical Engineering,Dalian University of Technology [2]Department of Biological Engineering,University of Technology of Compiegne

出  处:《Chinese Journal of Chemical Engineering》2012年第4期617-624,共8页中国化学工程学报(英文版)

基  金:Supported by the National Science Fund for Distinguished Young Scholars of China (21125628);the National High Technology Research and Development Program of China (2012AA03A611);the Fundamental Research Fund for the Central Universities (DUT11ZD112)

摘  要:This paper reports experimental and computational fluid dynamics(CFD) studies on the performance of microfiltration enhanced by a helical screw insert.The experimental results show that the use of turbulence pro-moter can improve the permeate flux of membrane in the crossflow microfiltration of calcium carbonate suspension,and flux improvement efficiency is strongly influenced by operation conditions.The energy consumption analysis indicates that the enhanced membrane system is more energy saving at higher feed concentrations.To explore the intrinsic mechanism of flux enhancement by a helical screw insert,three-dimensional CFD simulation of fluid flow was implemented.It reveals that hydrodynamic characteristics of fluid flow inside the channel are entirely changed by the turbulence promoter.The rotational flow pattern increases the scouring effect on the tube wall,reducing the particle deposition on the membrane surface.The absence of stagnant regions and high wall shear stress are respon-sible for the enhanced filtration performance.No secondary flow is generated in the channel,owing to the streamline shape of helical screw insert,so that the enhanced performance is achieved at relatively low energy consumption.This paper reports experimental and computational fluid dynamics (CFD) studies on the performance of microfiltration enhanced by a helical screw insert. The experimental results show that the use of turbulence pro- moter can improve the permeate flux of membrane in the crossflow microfiltration of calcium carbonate suspension, and flux improvement efficiency is strongly influenced by operation conditions. The energy consumption analysis indicates that the enhanced membrane system is more energy saving at higher feed concentrations. To explore the intrinsic mechanism of flux enhancement by a helical screw insert, three-dimensional CFD simulation of fluid flow was implemented. It reveals that hydrodynamic characteristics of fluid flow inside the channel are entirely changed by the turbulence promoter. The rotational flow pattern increases the scouring effect on the tube wall, reducing theparticle deposition on the membrane surface. The absence of stagnant regions and high wall shear stress are respon- sible for the enhanced filtration performance. No secondary flow is generated in the channel, owing to the streamline shape of helical screw insert, so that theenhanced perform, ance is achieved at relatively low energy consumption.

关 键 词:membrane fouling flux enhancement turbulence promoter computational fluid dynamics 

分 类 号:TQ052[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象