检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Huagang Yu Gaoming Huang Jun Gao Bo Yan
机构地区:[1]College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, P. R. China [2]Marine Communication Technology Institute, Beijing 100841, P. R. China
出 处:《Journal of Systems Engineering and Electronics》2012年第4期488-494,共7页系统工程与电子技术(英文版)
基 金:supported by the National High Technology Research and Development Program of China (863 Program) (2010AA7010422; 2011AA7014061)
摘 要:By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating the position and velocity of a moving source is proposed. By utilizing the Lagrange multipliers technique, the known relation between the intermediate variables and the source location coordinates could be exploited to constrain the solution. And without requiring apriori knowledge of TDOA and FDOA measurement noises, the proposed algorithm can satisfy the demand of practical applications. Additionally, on basis of con- volute and polynomial rooting operations, the Lagrange multipliers can be obtained efficiently and robustly allowing real-time imple- mentation and global convergence. Simulation results show that the proposed estimator achieves remarkably better performance than the two-step weighted least square (WLS) approach especially for higher measurement noise level.By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating the position and velocity of a moving source is proposed. By utilizing the Lagrange multipliers technique, the known relation between the intermediate variables and the source location coordinates could be exploited to constrain the solution. And without requiring apriori knowledge of TDOA and FDOA measurement noises, the proposed algorithm can satisfy the demand of practical applications. Additionally, on basis of con- volute and polynomial rooting operations, the Lagrange multipliers can be obtained efficiently and robustly allowing real-time imple- mentation and global convergence. Simulation results show that the proposed estimator achieves remarkably better performance than the two-step weighted least square (WLS) approach especially for higher measurement noise level.
关 键 词:source localization constrained least-square(CLS) time difference of arrival (TDOA) frequency difference of arrival(FDOA) Lagrange multiplier.
分 类 号:O231[理学—运筹学与控制论] O415.5[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117